Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Glob Chang Biol ; 30(4): e17268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562029

RESUMO

Although substantial advances in predicting the ecological impacts of global change have been made, predictions of the evolutionary impacts have lagged behind. In soil ecosystems, microbes act as the primary energetic drivers of carbon cycling; however, microbes are also capable of evolving on timescales comparable to rates of global change. Given the importance of soil ecosystems in global carbon cycling, we assess the potential impact of microbial evolution on carbon-climate feedbacks in this system. We begin by reviewing the current state of knowledge concerning microbial evolution in response to global change and its specific effect on soil carbon dynamics. Through this integration, we synthesize a roadmap detailing how to integrate microbial evolution into ecosystem biogeochemical models. Specifically, we highlight the importance of microscale mechanistic soil carbon models, including choosing an appropriate evolutionary model (e.g., adaptive dynamics, quantitative genetics), validating model predictions with 'omics' and experimental data, scaling microbial adaptations to ecosystem level processes, and validating with ecosystem-scale measurements. The proposed steps will require significant investment of scientific resources and might require 10-20 years to be fully implemented. However, through the application of multi-scale integrated approaches, we will advance the integration of microbial evolution into predictive understanding of ecosystems, providing clarity on its role and impact within the broader context of environmental change.


Assuntos
Ecossistema , Microbiologia do Solo , Solo , Carbono , Clima
2.
Sci Adv ; 10(14): eadh5543, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569031

RESUMO

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating temperature threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduction in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

3.
Science ; 384(6692): 233-239, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603490

RESUMO

Global estimates of the size, distribution, and vulnerability of soil inorganic carbon (SIC) remain largely unquantified. By compiling 223,593 field-based measurements and developing machine-learning models, we report that global soils store 2305 ± 636 (±1 SD) billion tonnes of carbon as SIC over the top 2-meter depth. Under future scenarios, soil acidification associated with nitrogen additions to terrestrial ecosystems will reduce global SIC (0.3 meters) up to 23 billion tonnes of carbon over the next 30 years, with India and China being the most affected. Our synthesis of present-day land-water carbon inventories and inland-water carbonate chemistry reveals that at least 1.13 ± 0.33 billion tonnes of inorganic carbon is lost to inland-waters through soils annually, resulting in large but overlooked impacts on atmospheric and hydrospheric carbon dynamics.

5.
Sci Total Environ ; 920: 170599, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38309343

RESUMO

Global coarse-resolution (≥250 m) burned area (BA) products have been used to estimate fire related forest loss, but we hypothesised that a significant part of fire impacts might be undetected because of the underestimation of small fires (<100 ha), especially in the tropics. In this paper, we analysed fire-related forest cover loss in sub-Saharan Africa (SSA) for 2016 and 2019 based on a BA product generated from Sentinel-2 data (20 m), which was observed to have significantly lower omission errors than the coarse-resolution BA products. Using these higher resolution BA datasets, we found that fires contribute to >46 % of total forest losses over SSA, more than twice the estimates from coarse-resolution BA products. In addition, burned forest areas showed more than twofold likelihood of subsequent loss compared to unburned ones. In moist tropical forests, the most fire-vulnerable biome, burning had even six times more chance to precede forest loss than unburned areas. We also found that fire-related characteristics, such as fire size and season, and forest fragmentation play a major role in the determination of tree cover fate. Our results reveal that medium-resolution BA detects more fires in late fire season, which tend to have higher impact on forests than early season ones. On the other hand, small fires represented the major driver of forest loss after fires and the vast majority of these losses occur in fragmented landscapes near forest edge (<260 m). Therefore medium-resolution BA products are required to obtain a more accurate evaluation of fire impacts in tropical ecosystems.

6.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390215

RESUMO

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

7.
Sci Adv ; 10(9): eadi9325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416832

RESUMO

Climate change-induced precipitation anomalies during extremely wet years (EWYs) result in substantial nitrogen losses to aquatic ecosystems (Nw). Still, the extent and drivers of these losses, and effective mitigation strategies have remained unclear. By integrating global datasets with well-established crop modeling and machine learning techniques, we reveal notable increases in Nw, ranging from 22 to 56%, during historical EWYs. These pulses are projected to amplify under the SSP126 (SSP370) scenario to 29 to 80% (61 to 120%) due to the projected increases in EWYs and higher nitrogen input. We identify the relative precipitation difference between two consecutive years (diffPr) as the primary driver of extreme Nw. This finding forms the basis of the CLimate Extreme Adaptive Nitrogen Strategy (CLEANS), which scales down nitrogen input adaptively to diffPr, leading to a substantial reduction in extreme Nw with nearly zero yield penalty. Our results have important implications for global environmental sustainability and while safeguarding food security.

9.
Glob Chang Biol ; 30(1): e17097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273510

RESUMO

The Tibetan Plateau, housing 20% of China's wetlands, plays a vital role in the regional carbon cycle. Examining the phenological dynamics of wetland vegetation in response to climate change is crucial for understanding its impact on the ecosystem. Despite this importance, the specific effects of climate change on wetland vegetation phenology in this region remain uncertain. In this study, we investigated the influence of climate change on the end of the growing season (EOS) of marsh wetland vegetation across the Tibetan Plateau, utilizing satellite-derived Normalized Difference Vegetation Index (NDVI) data and observational climate data. We observed that the regionally averaged EOS of marsh vegetation across the Tibetan Plateau was significantly (p < .05) delayed by 4.10 days/decade from 2001 to 2020. Warming preseason temperatures were found to be the primary driver behind the delay in the EOS of marsh vegetation, whereas preseason cumulative precipitation showed no significant impact. Interestingly, the responses of EOS to climate change varied spatially across the plateau, indicating a regulatory role for hydrological conditions in marsh phenology. In the humid and cold central regions, preseason daytime warming significantly delayed the EOS. However, areas with lower soil moisture exhibited a weaker or reversed delay effect, suggesting complex interplays between temperature, soil moisture, and EOS. Notably, in the arid southwestern regions of the plateau, increased preseason rainfall directly delayed the EOS, while higher daytime temperatures advanced it. Our results emphasize the critical role of hydrological conditions, specifically soil moisture, in shaping marsh EOS responses in different regions. Our findings underscore the need to incorporate hydrological factors into terrestrial ecosystem models, particularly in cold and dry regions, for accurate predictions of marsh vegetation phenological responses to climate change. This understanding is vital for informed conservation and management strategies in the face of current and future climate challenges.


Assuntos
Ecossistema , Áreas Alagadas , Tibet , Desenvolvimento Vegetal , Estações do Ano , Mudança Climática , Água , Temperatura , Solo
10.
Glob Chang Biol ; 30(1): e17006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909670

RESUMO

Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.


Assuntos
Floresta Úmida , Resiliência Psicológica , Efeitos Antropogênicos , Conservação dos Recursos Naturais/métodos , Florestas
11.
Glob Chang Biol ; 30(1): e17043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988234

RESUMO

In the northern high latitudes, warmer spring temperatures generally lead to earlier leaf onsets, higher vegetation production, and enhanced spring carbon uptake. Yet, whether this positive linkage has diminished under climate change remains debated. Here, we used atmospheric CO2 measurements at Barrow (Alaska) during 1979-2020 to investigate the strength of temperature dependence of spring carbon uptake reflected by two indicators, spring zero-crossing date (SZC) and CO2 drawdown (SCC). We found a fall and rise in the interannual correlation of temperature with SZC and SCC (RSZC-T and RSCC-T ), showing a recent reversal of the previously reported weakening trend of RSZC-T and RSCC-T . We used a terrestrial biosphere model coupled with an atmospheric transport model to reproduce this fall and rise phenomenon and conducted factorial simulations to explore its potential causes. We found that a strong-weak-strong spatial synchrony of spring temperature anomalies per se has contributed to the fall and rise trend in RSZC-T and RSCC-T , despite an overall unbroken temperature control on net ecosystem CO2 fluxes at local scale. Our results provide an alternative explanation for the apparent drop of RSZC-T and RSCC-T during the late 1990s and 2000s, and suggest a continued positive linkage between spring carbon uptake and temperature during the past four decades. We thus caution the interpretation of apparent climate sensitivities of carbon cycle retrieved from spatially aggregated signals.


Assuntos
Carbono , Ecossistema , Temperatura , Dióxido de Carbono , Estações do Ano , Ciclo do Carbono , Mudança Climática
12.
Environ Res ; 245: 118014, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151146

RESUMO

The use of cover crops (CCs) is a promising cropland management practice with multiple benefits, notably in reducing soil erosion and increasing soil organic carbon (SOC) storage. However, the current ability to represent these factors in land surface models remains limited to small scales or simplified and lumped approaches due to the lack of a sediment-carbon erosion displacement scheme. This precludes a thorough understanding of the consequences of introducing a CC into agricultural systems. In this work, this problem was addressed in two steps with the spatially distributed CE-DYNAM model. First, the historical effect of soil erosion, transport, and deposition on the soil carbon budget at a continental scale in Europe was characterized since the early industrial era, using reconstructed climate and land use forcings. Then, the impact of two distinct policy-oriented scenarios for the introduction of CCs were evaluated, covering the European cropping systems where surface erosion rates or nitrate susceptibility are critical. The evaluation focused on the increase in SOC storage and the export of particulate organic carbon (POC) to the oceans, compiling a continental-scale carbon budget. The results indicated that Europe exported 1.95 TgC/year of POC to the oceans in the last decade, and that CCs can contribute to reducing this amount while increasing SOC storage. Compared to the simulation without CCs, the additional rate of SOC storage induced by CCs peaked after 10 years of their adoption, followed by a decrease, and the cumulative POC export reduction stabilized after around 13 years. The findings indicate that the impacts of CCs on SOC and reduced POC export are persistent regardless of their spatial allocation adopted in the scenarios. Together, the results highlight the importance of taking the temporal aspect of CC adoption into account and indicate that CCs alone are not sufficient to meet the targets of the 4‰ initiative. Despite some known model limitations, which include the lack of feedback of erosion on the net primary productivity and the representation of carbon fluxes with an emulator, the current work constitutes the first approach to successfully couple a distributed routing scheme of eroded carbon to a land carbon model emulator at a reasonably high resolution and continental scale. SHORT ABSTRACT: A spatially distributed model coupling erosion, transport, and deposition to the carbon cycle was developed. Then, it was used to simulate the impact of cover crops on both erosion and carbon, to show that cover crops can simultaneously increase organic carbon storage and reduce particulate organic carbon export to the oceans. The results seemed persistent regardless of the spatial distribution of cover crops.


Assuntos
Carbono , Solo , Conservação dos Recursos Naturais , Agricultura/métodos , Ciclo do Carbono , Poeira , Produtos Agrícolas
13.
New Phytol ; 241(1): 154-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804058

RESUMO

Potassium (K+ ) is the most abundant inorganic cation in plant cells, playing a critical role in various plant functions. However, the impacts of K on natural terrestrial ecosystems have been less studied compared with nitrogen (N) and phosphorus (P). Here, we present a global meta-analysis aimed at quantifying the response of aboveground production to K addition. This analysis is based on 144 field K fertilization experiments. We also investigate the influences of climate, soil properties, ecosystem types, and fertilizer regimes on the responses of aboveground production. We find that: K addition significantly increases aboveground production by 12.3% (95% CI: 7.4-17.5%), suggesting a widespread occurrence of K limitation across terrestrial ecosystems; K limitation is more prominent in regions with humid climates, acidic soils, or weathered soils; the effect size of K addition varies among climate zones/regions, and is influenced by multiple factors; and previous N : K and K : P thresholds utilized to detect K limitation in wetlands cannot be applied to other biomes. Our findings emphasize the role of K in limiting terrestrial productivity, which should be integrated into future terrestrial ecosystems models.


Assuntos
Ecossistema , Potássio , Nitrogênio , Clima , Solo , Fósforo
14.
Environ Sci Technol ; 58(1): 302-314, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38114451

RESUMO

Urban greenhouse gas emissions monitoring is essential to assessing the impact of climate mitigation actions. Using atmospheric continuous measurements of air quality and carbon dioxide (CO2), we developed a gradient-descent optimization system to estimate emissions of the city of Paris. We evaluated our joint CO2-CO-NOx optimization over the first SARS-CoV-2 related lockdown period, resulting in a decrease in emissions by 40% for NOx and 30% for CO2, in agreement with preliminary estimates using bottom-up activity data yet lower than the decrease estimates from Bayesian atmospheric inversions (50%). Before evaluating the model, we first provide an in-depth analysis of three emission data sets. A general agreement in the totals is observed over the region surrounding Paris (known as Île-de-France) since all the data sets are constrained by the reported national and regional totals. However, the data sets show disagreements in their sector distributions as well as in the interspecies ratios. The seasonality also shows disagreements among emission products related to nonindustrial stationary combustion (residential and tertiary combustion). The results presented in this paper show that a multispecies approach has the potential to provide sectoral information to monitor CO2 emissions over urban areas enabled by the deployment of collocated atmospheric greenhouse gases and air quality monitoring stations.


Assuntos
Poluentes Atmosféricos , COVID-19 , Gases de Efeito Estufa , Humanos , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , SARS-CoV-2 , Teorema de Bayes , Controle de Doenças Transmissíveis , Gases de Efeito Estufa/análise
17.
iScience ; 26(12): 108375, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025773

RESUMO

Accurate assessment of coal mine methane (CMM) emissions is a prerequisite for defining baselines and assessing the effectiveness of mitigation measures. Such an endeavor is jeopardized, however, by large uncertainties in current CMM estimates. Here, we assimilated atmospheric methane column concentrations observed by the TROPOMI space borne instrument in a high-resolution regional inversion to estimate CMM emissions in Shanxi, a province representing 15% of the global coal production. The emissions are estimated to be 8.5 ± 0.6 and 8.6 ± 0.6 Tg CH4 yr-1 in 2019 and 2020, respectively, close to upper bound of current bottom-up estimates. Data from more than a thousand of individual mines indicate that our estimated emission factors increase significantly with coal mining depth at prefecture level, suggesting that ongoing deeper mining will increase CMM emission intensity. Our results show robustness of estimating CMM emissions utilizing TROPOMI images and highlight potential of monitoring methane leakages and emissions from satellites.

18.
PNAS Nexus ; 2(9): pgad308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780232

RESUMO

The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.

19.
Nat Commun ; 14(1): 6218, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803032

RESUMO

The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe's developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.


Assuntos
Carbono , Florestas , Temperatura , Carbono/análise , Europa (Continente) , Temperatura Alta , Secas , Mudança Climática
20.
J Environ Manage ; 345: 118799, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690242

RESUMO

The impact of climate change on power demand in Japan and its related CO2 emissions is a matter of concern for the Japanese authorities and power companies as it may have consequences on the power grid, but is also of global importance as Japan is a significant contributor to global greenhouse gas emissions. In this study, we trained random forest models against daily power data in ten Japanese regions and for different types of power generation to project changes in future power production and its carbon intensity. We used climate variables, heat stress indices, and one variable for the level of human activities. We then used the models trained from the present-day period to estimate the future power demand, carbon intensity, and pertaining CO2 emissions over the period 2020-2100 under three Shared Socioeconomic Pathways (SSPs) scenarios (SSP126, SSP370, and SSP585). The impact of climate change on CO2 emissions via power generation shows seasonal and regional disparities. In cold regions, a decrease in power demand during winter under future warming leads to an overall decrease in power demand over the year. In contrast, the decrease in winter power demand in hot regions can be overcompensated by an increase in summer power demand due to more frequent hot days, resulting in an overall annual increase. From our regional models, power demand is projected to increase the most in most Japanese regions in May, June, September, and October rather than in the middle of summer, as found in previous studies. This increase could result in regular power outages during those months as the power grid could become particularly tense. Overall, we observed that power demand in regions with extreme climates is more sensitive to global warming than in temperate regions. The impact of climate change on power demand induces a net annual decrease in CO2 emissions in all regions except for Okinawa, in which power demand strongly increases during the summer, resulting in a net annual increase in CO2 emissions. However, climate change's impact on carbon intensity may reverse the trend in some regions (Shikoku, Tohoku). Additionally, we assessed the relative impacts of socioeconomic factors such as population, GDP, and environmental policies on CO2 emissions. When combined with these factors, we found that the climate change effect is more important than when considered individually and significantly impacts total CO2 emissions under SSP585. The contrasting results observed in the warm and cold regions of Japan can offer valuable insight into the potential future variations in energy demand and resulting CO2 emissions on a global scale.


Assuntos
Dióxido de Carbono , Mudança Climática , Humanos , Dióxido de Carbono/análise , Japão , Aquecimento Global , Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA